Why Teach Maths

The teaching of Mathematics aims to develop students into confident mathematicians who can show resilience in their mathematical journey to become fluent with their conceptual understanding. The maths scheme of work is sequenced to ensure that students can master the basic conceptual skills before progressing, providing opportunities to make connections between topics.

Using this acquired depth of knowledge, students will be able to increase their awareness of mathematical techniques and their applications and develop key employability skills such as logical reasoning and problem-solving.

Substantive Big Ideas									
Substantive Area and Year (s) Taught		7	8	9	10	11	12	13	
¢	Number								
\\|\|\|	Ratio and Proportion								
40	Geometry								
$\sqrt{\frac{x}{y}}$	Algebra								
)	Statistics								
80	Probability								

[^0]Prince William School
Maths Curriculum Map - Topics by Term - KS3 and 4

Prince William School

Maths Curriculum Map - Substantive Progression KS3 (Number)

	Year 7	Year 8
	- understand and use place value - round numbers and measures to an appropriate degree of accuracy - order positive and negative integers, decimals and fractions - generate terms of a sequence from a term-to-term rule - recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions - use positive integer powers and associated real roots, recognise powers of $2,3,4,5$ - apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers - use conventional notation for priority of operations, including brackets - use the symbols $=, \neq,<, \geq, \leq, \geq$ - estimate answers; check calculations using approximation and estimation - substitute numerical values into formulae and expressions - understand and use standard mathematical formulae - recognise and use relationships between operations, including inverse operations - express one quantity as a fraction of another - define percentage as 'number of parts per hundred' - interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively - compare two quantities using percentages - solve problems involving percentage change, including percentage increase/decrease - interpret fractions and percentages as operators - use standard units of mass, length, time, money, and other measures (including standard compound measures) using decimal quantities where appropriate - use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.) - change freely between related standard units (e.g., time, length, area, volume/capacity, mass) in numerical contexts - convert between different units of measure [for example, kilometre to metre, hour to minute]	- generate terms of a sequence from either a term-to-term or a position-to-term rule - deduce expressions to calculate the nth term of linear sequences - use the concepts and vocabulary of prime numbers, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem - calculate with positive integer indices - use conventional notation for priority of operations - substitute numerical values into scientific formulae - work with percentages greater than 100% - solve problems involving percentage change, including original value problems, and simple interest including in financial mathematic - work interchangeably with terminating decimals and their corresponding fractions - calculate exactly with fractions - use compound units such as speed, rates of pay, unit pricing - change freely between compound units - in numerical contexts

Prince William School

Maths Curriculum Map - Substantive Progression KS3 (Ratio \& Proportion)

	Year 7	Year 8	Year 9 support / core / higher
NOILYOdOYd 8 OILVy	- use ratio notation, including reduction to simplest form - divide a given quantity into two parts in each part: part or part: whole ratio	- express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations) - express a multiplicative relationship between two quantities as a ratio or a fraction - understand and use proportion as equality of ratios - relate ratios to fractions and to linear functions - compare lengths, areas and volumes using ratio notation - use scale factors, scale diagrams and maps - identify and work with fractions in ratio problems	- express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1 - define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; solve problems involving percentage change, including percentage increase/decrease - work interchangeably with simple examples of terminating decimals and their corresponding fractions - use ratio notation, including reduction to simplest form - divide a given quantity into two parts in a given part: part or part: whole ratio; apply ratio to real contexts and problems understand and use proportion as equality of ratios - use ratio notation, including reduction to simplest form - divide a given quantity into two parts in a given part or whole ratio; - use proportion as equality of ratios as above plus - express a multiplicative relationship between two quantities as a ratio or a fraction - relate ratios to fractions and to linear functions - use scale factors, scale diagrams and maps - compare lengths, areas and volumes using ratio notation; make links to similarity and scale factors - identify and work with fractions in ratio problems - solve problems involving direct and inverse proportion, including graphical and algebraic representations - change freely between related standard units in numerical contexts - solve problems involving percentage change, including original value problems, and simple interest including in financial mathematics - solve problems involving direct and inverse proportion, including graphical and algebraic representations - apply the concepts of congruence and similarity, including the relationships between lengths in similar - figures - use compound units such as density and pressure; - change freely between compound units (e.g., density, pressure) in numerical and algebraic contexts

Maths Curriculum Map - Substantive Progression KS3 (Geometry)

	Year 7
	- identify properties of the faces, surfaces, edges and vertices of cubes, cuboids, prisms, cylinders, pyramids, cones, and spheres - use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries - use the standard conventions for labelling and referring to the sides and angles of triangles - apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles - derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language
- calculate perimeters of 2D shapes	
- calculate the area of parallelograms, triangles and trapezia	
- know and apply formulae to calculate volume of cuboids	
- draw diagrams from written description	
- measure line segments and angles in geometric figures	
- use conventional terms and notations: points, lines, vertices, edges, planes,	
parallel lines, perpendicular lines, right angles, polygons, regular polygons, and	
polygons with reflection and/or rotation symmetries	

- measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings
- use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle)
- use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line
- understand and use alternate and corresponding angles on parallel lines - derive and use the sum of angles in a triangle (e.g., to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
- calculate perimeters of circles and composite shapes
- know and apply formulae to calculate volume of right prisms (including cylinders)
- plot graphs of equations that correspond to straight-line graphs in the coordinate plane
- identify and interpret gradients and intercepts of linear functions graphically and algebraically
- recognise, sketch and interpret graphs of linear functions and quadratic functions
- find approximate solutions to linear equations using a graph
- identify, describe, and construct similar shapes, including on coordinate axes, by considering enlargement

Year 9 support / core / higher

revision of earlier learning, as necessary, plus

- derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language - know and apply formulae to calculate area of triangles, parallelograms, trapezia; volume of cuboids
- apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles
- measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings
- identify, describe and construct congruent shapes, including on coordinate axes, by considering rotation, reflection and translation and enlargement; describe translations as 2 D vectors

As above plus

- apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g., to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
- know and apply formulae to calculate area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)
- know the formulae $=\boldsymbol{2 \pi r}=\boldsymbol{\pi} \boldsymbol{d}$, area of a circle $=\boldsymbol{\pi} \boldsymbol{r}^{\mathbf{2}}$; calculate perimeters of 2D shapes including circles, areas of circles and composite shapes
- identify and apply circle definitions and properties, including centre radius, diameter, chord, circumference, tangent, arc, sector and segment
- construct and interpret plans and elevations of 3D shapes
- Know the formulae for: Pythagoras' theorem and apply it to find lengths in right- angled triangles in two dimensional figures
- Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' Theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs - Calculate arc lengths, angles and areas of sectors of circles
- use the basic congruence criteria for triangles

Prince William School

Maths Curriculum Map - Substantive Progression KS3 (Algebra)

- solve linear equations in one unknown algebraically
- simplify and manipulate algebraic expressions by collecting like terms and multiplying a single term over bracket
- understand and use the concepts and vocabulary of expressions, equations, formulae and terms
- use and interpret algebraic notation
solve linear equations with the unknown on both sides of th equation
- rearrange formulae to change the subject
- simplify and manipulate algebraic expressions by taking out common factors and simplifying expressions involving sums, products and powers, including the laws of indices
- understand and use the concepts and vocabulary of inequalities and factors
- use and interpret algebraic notation; coefficients written as fractions rather than as decimals
- plot and interpret graphs and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration

Year 9 support / core / higher

- use and interpret algebraic notation, including brackets
- understand and use the concepts and vocabulary of expressions, terms and factors
- generate terms of a sequence from either a term-to-term or a position-to-term rule
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions - deduce expressions to calculate the nth term of linear sequences
- solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation
- work with coordinates in all four quadrants
- solve geometrical problems on coordinate axes
- plot graphs of equations that correspond to straight-line graphs in the coordinate plane as above plus
- substitute numerical values into formulae and expressions, including scientific formulae
- translate simple situations or procedures into algebraic expressions or formulae; derive an equation, solve the equation and interpret the solution
- understand and use standard mathematical formulae, rearrange formulae to change the subject
- identify and interpret gradients and intercepts of linear functions graphically and algebraically
- recognise, sketch and interpret graphs of linear functions
as above plus
- recognise and use Fibonacci type sequences, quadratic sequences and simple geometric progressions ($r^{\wedge} n$ where n is an integer, and r is a rational number >0)
- simplify and manipulate algebraic expressions by expanding products of two binomials and factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares
- know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments
- understand and use the concepts and vocabulary of identities
- translate simple situations or procedures into algebraic expressions or formulae, derive an equation, solve the equation and interpret the solution
- represent the solution set to an inequality on a number line and using set notation
- find approximate solutions to linear equations using a graph
- solve two linear simultaneous equations in two variables algebraically
- derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution
- find approximate solutions to simultaneous equations using a graph
- solve linear inequalities in two variables; represent the solution using set notation and, on a graph,
- use the form $y=m x+c$ to identify parallel lines
- find the equation of the line through two given points, or through one point with a given gradient
- identify and interpret roots, intercepts, turning points of quadratic functions graphically
- deduce roots of quadratic functions algebraically
- recognise, sketch and interpret graphs of simple cubic functions and the reciprocal function $y=$ $1 / x$ with $x \neq 0$
- plot and interpret graphs (and those of non-standard functions) in real contexts to find approximate solutions to problems such as simple kinematic problems

Maths Curriculum Map - Substantive Progression KS3 Statistics)

	Year 7	Year 8	Year 9 support / core / higher
SכIISIIVIS	- interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data and know their appropriate use - interpret, analyse and compare median, mean, mode and modal class and spread (range)	- use and interpret scatter graphs of bivariate data - recognise correlation - interpret, analyse and compare discrete, continuous and grouped data - Consideration of outliers - apply statistics to describe a population	- interpret and construct more complex tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data and know their appropriate use - interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency (median, mean, mode and modal class) and spread (range) - as above, plus - use and interpret scatter graphs of bivariate data; recognise correlation and know correlation does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends whilst knowing the dangers of so doing - as above

	Year 10 Support / Core / Higher	Year 11 Support / Core / Higher	Additional Maths Y10	Additional Maths Y11
	- apply the four operations, including formal written methods, to integers, decimals - both positive and negative - use conventional notation for priority of operations, including brackets, powers, roots and reciprocals - use positive integer powers and associated real roots; recognise powers of $2,3,4$ and 5 - calculate with roots and positive whole number indices - use the concepts and vocabulary of prime numbers, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem - order integers, decimals and fractions - apply the four operations, including formal written methods, to simple fractions (proper and improper), and mixed numbers - define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; solve problems involving percentage change, including percentage increase/decrease - use inequality notation to specify simple error intervals due to truncation or rounding - apply and interpret limits of accuracy - calculate with roots, and with integer indices - calculate with and interpret standard form - calculate exactly with multiples of π - work interchangeably with terminating decimals and their corresponding fractions - solve problems involving percentage change, including original value problems, and simple interest including in financial mathematics - apply and interpret limits of accuracy, - estimate powers and roots of any given positive number - calculate with roots, and with fractional indices - calculate exactly with surds - simplify surd expressions involving squares and rationalise denominators	- use inequality notation to specify simple error intervals due to truncation or rounding - apply and interpret limits of accuracy - calculate with and interpret standard form - calculate exactly with multiples of π		

Prince William School

Maths Curriculum Map - Substantive Progression KS4 (Ratio \& Proportion)

	Year 10 Support / Core / Higher	Year 11 Support / Core / Higher	Additional Maths Y10	Additional Maths Y11
uo!fodord pue o!fey	- express a multiplicative relationship between two quantities as a ratio or a fraction - understand and use proportion as equality of ratios - relate ratios to fractions and to linear functions - use scale factors, scale diagrams and maps - compare lengths, areas and volumes using ratio notation; make links to similarity \& scale factor - identify and work with fractions in ratio problems - solve problems involving direct and inverse proportion - change freely between related standard units in numerical contexts - divide a given quantity into two parts in a given part: part or part: whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems - solve problems involving direct and inverse proportion, including graphical and algebraic representations - apply the concepts of congruence and similarity, including the relationships between lengths in similar figures - use compound units such as density and pressure; - change freely between compound units (e.g., density, pressure) in numerical and algebraic contexts - change recurring decimals into their corresponding fractions and vice versa - set up, solve and interpret the answers in growth and decay problems, including compound interest	- set up, solve and interpret the answers in growth and decay problems, including compound interest - understand that X is inversely proportional to Y is equivalent to X is proportional to $1 / \mathrm{Y}$; construct and interpret equations that describe direct and inverse proportion - recognise and interpret graphs that illustrate direct and inverse proportion		

Prince William School

Maths Curriculum Map - Substantive Progression KS4 (Geometry)

	Year 10 Support / Core / Higher	Year 11 Support / Core / Higher	Additional Maths Y10	Additional Maths Y11
	- identify properties of the faces, surfaces, edges and vertices of cubes, cuboids, prisms, cylinders, pyramids, cones and spheres	- identify and apply circle definitions and properties, including centre, radius,	- calculate the distance between two points - Find the mid-point of a line segment	- confirm the presence of a root by considering the sign of a function at the ends of an interval

- use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles
- derive and apply the properties and definitions of special types of quadrilaterals using appropriate language
- apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle
- know the formulae for: Pythagoras' theorem and apply it to find lengths in right-angled triangles in two dimensional figures
- identify and apply circle definitions and properties, including centre, radius, diameter, chord, circumference, tangent, arc, sector and segment
- use the standard ruler and compass constructions; know that the perpendicular distance from a point to a line is the shortest distance to the line
- construct and interpret plans and elevations of 3D shapes
- apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides,
- calculate arc lengths, angles and areas of sectors of circles
- use the basic congruence criteria for triangles
- apply Pythagoras' theorem to find lengths in three dimensional figures
- know the trigonometric ratios, and apply them to find angles and lengths in right-angled triangles in two dimensional figures
- know the exact values of $\sin \theta, \cos \theta$ and $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$, 60° and 90°;
- apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results
- calculate surface area and volume of spheres, pyramids, cones and composite solids
- apply the concepts of congruence and similarity, including the relationships between length, areas and volumes in similar figures - identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection and translation and enlargement; describe translations as 2D vectors
- describe the changes and invariance achieved by combinations of rotations, reflections and translations
- apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors
- use vectors to construct geometric arguments and proofs
diameter, chord, circumference, tangent, arc, sector and segment
- use the standard ruler and compass constructions and use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line
- construct and interpret plans and elevations of 3D shapes
- Identify, describe and construct congruent shapes, including on coordinate axes, by considering rotation, reflection and translation and enlargement; describe translations as 2D vectors
- calculate surface area and volume of spheres, pyramids, cones and composite solids
- apply the concepts of congruence and) similarity
- know the formulae for: Pythagoras' theorem, and apply it to find lengths in right-angled triangles and, where possible, general triangles and in three dimensional figures;
- know the trigonometric ratios, to find angles and lengths in right-angled triangles and, where possible, general triangles in two dimensional figures
- know the exact values of $\sin \theta, \cos \theta$ fand $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°;
- know the trigonometric ratios, and apply them to find angles and lengths in rightangled triangles and, where possible, general triangles in three dimensional figures
- know and apply the sine rule to find unknown lengths and angles
- know and apply Area $=1 / 2 a b \operatorname{sinC}$ to calculate the area, sides or angles of any triangle.
- sketch translations and reflections of a given function
- recognise, sketch and interpret graphs of exponential functions $\boldsymbol{y}=\boldsymbol{k}^{\boldsymbol{x}}$ for positive values of \boldsymbol{k}, and the trigonometric functions (with arguments in degrees) $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}, \boldsymbol{y}=$ $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ and $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$ for angles of any size their graphs
- know the sine and cosine rules and be able to apply them, including the
ambiguous case for sine
- know and use the identity

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

- know and use the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$

- solve simple trigonometric equations in

 given interval- apply Pythagoras theorem and trigonometry to two- and threedimensional problems
- the rule for integrating x^{n} where n is a positive integer
- use the integral notation
- Find definite integrals
- Find areas between curve and x -axis
recognise a situation when a change of sign may not indicate

a root

- improve the accuracy of a root using
-interval bisection
-decimal search
-an iterative function
- estimate the gradient of a tangent to a curve at a point using -a central difference
-a forward difference
-a backward difference
- improve the estimate of a gradient
- recognise when an attempt to improve an estimate of a gradient might not work
- estimate the area under a curve and the x-axis using -the trapezium rule
-rectangular strips
- recognise when an estimate of an area would be an overestimate or an underestimate
- differentiation
- iterative sequences
- the gradient of a curve
- stationary points
- the second derivative

improve an estimate of an are

- find the area between a curve, two ordinates and the x-axis
- find the area between two curves
- integrate where n is a positive integer or 0 , and the sum of such functions
- understand integration as the reverse process of differentiation
- know what is meant by a definite and an indefinite integral

Prince William School

Maths Curriculum Map - Substantive Progression KS4 (Algebra)

	Year 10 Support / Core / Higher	Year 11 Support / Core / Higher	Additional Maths Y10	Additional Maths Y11
$\sqrt{\frac{x}{y}}$ $\begin{aligned} & \frac{0}{0} \\ & 0 \\ & \frac{0}{4} \end{aligned}$	- use and interpret algebraic notation, - understand and use the concepts and vocabulary of expressions, equations, formulae, inequalities, terms and factors - simplify and manipulate algebraic expressions - substitute numerical values into formulae and expressions, including scientific formulae - translate simple situations or procedures into algebraic expressions or formulae; derive an equation, solve the equation and interpret the solution - understand and use standard mathematical formulae, rearrange formulae to change the subject - solve linear inequalities in one variable null - represent the solution set to an inequality on a number line - work with coordinates in all four quadrants - solve geometrical problems on coordinate axes - plot graphs of equations that correspond to straight-line graphs in the coordinate plane - find approximate solutions to linear equations using a graph - identify and interpret gradients and intercepts of linear functions graphically and algebraically - recognise, sketch and interpret graphs of linear functions - plot and interpret graphs in real contexts to find approximate solutions to problems such as simple kinematic problems - as above plus - know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments - understand and use the concepts and vocabulary of identities - translate simple situations or procedures into algebraic expressions or formulae - recognise and use Fibonacci type sequences, quadratic sequences and simple geometric progressions (r^{n} where n is an integer, and r is a rational number >0) - translate simple situations or procedures into algebraic expressions or formulae; derive an equation, solve the equation and interpret the solution - understand and use standard mathematical formulae, rearrange formulae to change the subject - solve linear inequalities in one variable - represent the solution set to an inequality on a number line - use the form $y=m x+c$ to identify parallel lines - find the equation of the line through two given points, or through one point with a given gradient - identify and interpret roots, intercepts, turning points of quadratic functions graphically - deduce roots of quadratic functions algebraically - recognise, sketch and interpret graphs of simple cubic functions and reciprocal functions - plot and interpret graphs in real contexts to find approximate solutions to problems such as simple kinematic problems - find approximate solutions to linear equations using a graph - solve two linear simultaneous equations in two variables algebraically - derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution - find approximate solutions to simultaneous equations using a graph - solve quadratic equations algebraically by factorising - as above plus - simplify and manipulate algebraic expressions by collecting like terms, multiplying a single term over a bracket, taking out common factors, expanding products of two or more binomials, factorising quadratics of the form $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ including the difference of two squares, simplifying expressions involving sums, products and laws of indices - deduce expressions to calculate the nth term of quadratic sequences - recognise and use simple geometric progressions - solve quadratic equations, find approximate solutions using a graph - solve two simultaneous equations in two variables where one is quadratic algebraically - use the form $y=m x+c$ to identify perpendicular lines - recognise and use the equation of a circle with centre at the origin - find the equation of a tangent to a circle at a given point - interpret the gradient at a point on a curve as the instantaneous rate of change	- solve quadratic equations by completing the square - solve quadratic equations by using the quadratic formula - find approximate solutions to equations numerically using iteration - interpret the reverse process as the inverse function - interpret the succession of two functions as a 'composite function'	- algebraic manipulation - linear inequalities in two variables - polynomials, functions and equations - graphs - applications of equations and inequalities in one variable - sequences and recurrence relationships	- properties of the exponential function - applications of numerical methods - logarithms - reduction to linear form - equations involving exponentials - motion in a straight line - acceleration due to gravity - apply differentiation and integration to kinematics problems that involve displacement, velocity and acceleration of a particle moving in a straight line with variable or constant acceleration - use $x-t$ and v - t graphs - finding displacement from velocity and velocity from acceleration

	Year 10 Support / Core / Higher	Year 11 Support / Core / Higher	Additional Maths Y10	Additional Maths Y11
dil!!qeqod		- construct theoretical possibility spaces for single experiments with equally likely outcomes and use these to calculate theoretical probabilities - apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one - enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams - construct theoretical possibility spaces for combined experiments with equally likely outcomes and use these to calculate theoretical probabilities - calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions - as above and understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size - calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams.	- probability diagrams - factorials and the product rule - permutations and combinations	- binomial expansion - binomial distribution

Prince William School

Maths Curriculum Map - Substantive Progression KS5 (Core Maths)

Year 12

MATHS FOR PERSONAL FINANCE

- substituting numerical values into formulae, spreadsheets and financial expressions
- using conventional notation for priority of operations, including brackets, powers, roots and reciprocals
- applying and interpreting limits of accuracy, specifying simple error intervals due to truncation or rounding
- finding approximate solutions to problems in financial contexts
- interpreting percentages and percentage changes as a fraction or a decimal and interpreting these multiplicatively
- expressing one quantity as a percentage of another
- comparing two quantities using percentages
- working with percentages over 100%
- solving problems involving percentage change
- simple and compound interest
- Saving and investments using AER
- student loans and mortgages using APR
- graphical representation (plotting points to create graphs and interpreting results from graphs in financial contexts)
- income tax, National Insurance, Value Added Tax (VAT)
- the effect of inflation, Retail Price Index (RPI), Consumer Price Index (CPI)
- setting up, solving and interpreting the solutions to financial problems, including those that involve compound interest using iterative methods
- currency exchange rates including commission

- budgeting

Maths

DATA

- Inferring properties of populations or distributions from a sample, whilst knowing the limitations of sampling
- Constructing and interpreting diagrams for grouped discrete data and continuous data, knowing their appropriate use and reaching conclusions based on these diagrams
- Representing a situation mathematically, making assumptions and simplifications
- Selecting and using appropriate mathematical techniques for problems and situations
- Interpreting results in the context of a given problem
- Evaluating methods and solutions including how they may have been affected assumptions made

COMMUNICATING MATHEMATICAL APPROACHESND SOLUTIONS

- Summarising and report writing
- Comparing results from a model with real data
- Critical analysis of data quoted in media, political campaigns, marketing etc

ESTIMATION

- representing a situation mathematically, making assumptions and simplifications
- selecting and using appropriate mathematical techniques for problems and situations
- interpreting results in the context of a given problem
- evaluating methods and solutions including how they may have been affected by assumptions made
- making fast, rough estimates of quantities which are either difficult or impossible to measure directly

Year 13

RITICAL PATH ANAIYSIS

- Representing compound projects by activity networks
- Activity on-node representation will be used
- Using early time and late time algorithms to identify critical activities and find the critical path(s)
- Using Gantt charts (cascade diagrams) to present project activities
- Understanding that uncertain outcomes can be modelled as random event with estimated probabilities
- Applying ideas of randomness, fairness and equally likely events to calculate expected outcomes
- Understanding and applying Venn diagrams and simple tree diagrams
- Calculating the probability of combined events
- Calculating the expected value of quantities such as financial loss or gain
- Understanding that many decisions have to be made when outcomes cannot be precited with certainty
- Understanding that the actions that can be taken to reduce or prevent specific risks may have their own costs
- Using probabilities to calculate expected values of costs and benefits decisions - Understanding that calculating an expected value is an important part of such decision making

Prince William School

Maths Curriculum Map - Substantive Progression KS5 (A Level) - Pure (1)

		A Level Maths		A Level Further Maths	
		Year 12	Year 13	Year 12	Year 13
$\frac{9}{2}$	"은	- Understand and use the structure of mathematical proof - Use methods of proof, including proof by deduction, proof by exhaustion \& disproof by counterexample	- Use the method of proof by contradiction	- Construct proofs using mathematical induction; contexts include sums of series, divisibility, and powers of matrices.	- V
		- Understand and use the laws of indices for all rational exponents - Use and manipulate surds, including rationalising the denominator - Work with quadratic functions and their graphs - Solve simultaneous equations in two variables by elimination and by substitution - Solve linear and quadratic inequalities in a single variable and interpret these graphically - Express solutions through correct use of 'and' and 'or', or through set notation - Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation, and simple algebraic division; use of the factor theorem - Sketch curves defined by simple equations including polynomials - Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations - Understand the effect of simple transformations on the graph of $y=f(x)$ including sketching associated graphs	- Simplify rational expressions - Understand and use the modulus of a function; including their graphs - Understand and use composite functions, inverse functions and their graphs - Understand the effect of combinations of transformations - Decompose rational functions into partial fractions	- Understand and use the relationship between roots and coefficients of polynomial equations up to quartic equations. - Form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation - Understand and use formulae for the sums of integers, squares and cubes and use these to sum other series. - Understand and use the method of differences for summation of series including use of partial fractions. - Recognise and use the Maclaurin series for $e x, \ln (1+x), \sin x, \cos x$, and $(1+x) n$, and be aware of the range of values of x for which they are valid (proof not required). - Inequalities involving polynomial equations - Solving inequalities algebraically. - Graphs of $y=\|f(x)\|, y=1 / f(x)$ for given $y=f(x)$ - Graphs of rational functions of form (ax+b)/(cx+d); asymptotes, points of intersection with coordinate axes or other straight lines; associated inequalities. - Graphs of rational functions of form ($\left.a x^{\wedge} 2+b x+c\right) /\left(d / x^{\wedge} 2+e x+f\right)$ including cases when some of these coefficients are zero; asymptotes parallel to coordinate axes - Using quadratic theory (not calculus) to find the possible values of the function and coordinates of the stationary points of the graph for rational functions of form ($\left.a x^{\wedge} 2+b x+c\right) /\left(\mathbb{d} x^{\wedge} 2+e x+f\right)$ - Sketching graphs of curves with equations - $x^{\wedge} 2 / a^{\wedge} 2+y^{\wedge} 2 / b^{\wedge} 2=1, x^{\wedge} 2 / a^{\wedge} 2-y^{\wedge} 2 / b^{\wedge} 2=1, x y=c^{\wedge} 2$ - including intercepts with axes and equations of asymptotes of hyperbolas. - Single transformations of curves involving translations, stretches parallel to coordinate axes and reflections in the coordinate axes and the lines $y= \pm x$	- Find the Maclaurin series of a function including the general term - Evaluation of limits using Maclaurin series or I'Hôpital's rule - Modulus of functions and associated inequalities
		- Understand and use the equation of a straight line, including in modelling contexts - Understand and use the coordinate geometry of the circle including using the equation of a circle in the form ($x-a$) $2+(y-$ b) $2=r 2$ - Completing the square to find the centre and radius of a circle - Use of the following properties: the angle in a semicircle is a right angle, the perpendicular from the centre to a chord bisects the chord \& the radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point	- Understand and use parametric equations of curves, including in modelling in a variety of contexts - Convert between Cartesian equations and parametric equations		
			- Understand and use the binomial expansion of ($a+b x$) n for any rational n - Understand and use recurrence relations - Understand and use sigma notation for sums of series - Understand and work with arithmetic sequences and series - Understand and work with geometric sequences and series		

Prince William School

Maths Curriculum Map - Substantive Progression KS5 (A Level) - Pure (2)

		A Level Maths		A Level Further Maths	
		Year 12	Year 13	Year 12	Year 13
$\frac{0}{2}$		- Understand and use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y) - Understand the gradient of the tangent as a limit - Sketching the gradient function for a given curve - Understand differentiation from first principles for small positive integer powers of x - Apply differentiation to find gradients, tangents and normal, maxima and minima and stationary points, points of inflection - Identify where functions are increasing or decreasing	- Understand and use the second derivative in determining the convex/concave sections of curves and points of inflection - Differentiate polynomial functions using the chain rule, including problems involving connected rates of change and inverse functions - Differentiate polynomial functions using the product and quotient rules - Understand and use the second derivative in determining the convex/concave sections of curves and points of inflection - Differentiate polynomial functions using the chain rule, including problems involving connected rates of change and inverse functions - Differentiate polynomial functions using the product and quotient rules - Differentiate the - exponential function, - the trigonometric functions, related sums, differences and constant multiples - Understand and use the derivative of $\ln x$ - Differentiate using the chain rule, product rule and quotient rule - Differentiate simple functions and relations defined implicitly - Differentiate simple functions and relations defined parametrically		
		- Integrate $\times n$ (excluding $n=-1$), and related sums, differences, and constant multiples - Evaluate definite integrals - Use a definite integral to find the area under a curve	- Integrate the exponential function, $1 / x$, the trigonometric functions and related sums, differences and constant multiples - Use a definite integral to find the area between two curves - Understand and use integration as the limit of a sum - Carry out simple cases of integration by substitution - Carry out simple cases of integration by parts - Integrate using partial fractions - Construct simple differential equations in pure mathematics and in context - Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions - Interpret the solution of a differential equation in the context of solving a problem - Use differential equations in kinematics problems		
	$\frac{\frac{n}{3}}{\frac{\text { n }}{0}}$			- Evaluate improper integrals where either the integrand is undefined at a value in the range of integration or the range of integration extends to infinity - Derive formulae for and calculate volumes of revolution. - Understand and evaluate the mean value of a function.	- Integrate using partial fractions - Differentiate inverse trigonometric functions - Integrate functions of the form $\left(a^{\wedge} 2-x^{\wedge} 2\right)^{\wedge} 2,\left(a^{\wedge} 2+x^{\wedge} 2\right)^{\wedge}(-1)$ and be able to choose trigonometric substitutions to integrate associated functions - Arc length and area of surface of revolution for curves expressed in Cartesian or parametric coordinates - Derivation and use of reduction formulae for integration. - The limits $\lim \left(x^{\wedge} k \mathbb{C}^{\wedge}(-x)\right.$, and $x^{\wedge} k \ln x$,where $k>0$ applied to improper integrals
				- Find and use an integrating factor to solve differential equations of form $d y / d x+P(x) y=Q(x)$ and recognise when it is appropriate to do so.	- Find both general and particular solutions of differential equations. - Use differential equations in modelling in kinematics and in other contexts. - Solve differential equations of form $\mathrm{y}^{\prime \prime}+\mathrm{ay}{ }^{\prime}+\mathrm{by}=0$ where a and b are constants, by using the auxiliary equation. - Solve differential equations of form $\mathrm{y}^{\prime \prime}+\mathrm{ay}+\mathrm{by}=0$ where a and b are constants, by solving the homogeneous case and adding a particular integral to the complementary function (in cases where $f(x)$ is a polynomial, exponential or trigonometric function) - Understand and use the relationship between the cases when the discriminant of the auxiliary equation is positive, zero and negative and the form of solution of the differential equation. - Solve the equation for simple harmonic and relate the solution to the motion. - Model damped oscillations using 2nd order differential equations and interpret their solutions. Understand light, critical, and heavy damping and be able to determine when each will occur. - Analyse and interpret models of situations with one independent variable and two dependent variables as a pair of coupled 1st order simultaneous equations and be able to solve them, for example predator-prey models. - Use of Hooke's law with $T=k x$ to formulate a differential equation for simple harmonic motion, where k is a constant. - Use models for damped motion where damping force is proportional to the velocity

Prince William School

Maths Curriculum Map－Substantive Progression KS5（A Level）－Pure（3）

Year 12

－Calculate the magnitude and direction of a 2 D vector and －Calculate the magnitude and direction of a 2D vector and form
Add 2 D vectors diagrammatically and perform the algebraic perations of vector addition and multiplication by scalars and understand their geometrical interpretations
－Understand and use position vectors；calculate the distance between two points represented by position vectors Understand and use the binomial expansion of $(a+b x) n$ for positive integer n and the notations n ！and nCr

derstand and use the definions of cosine and tangent for all arguments
－Use the sine rule，cosine rule and the area of a triangle formul their graphs，symmetries and periodicity
－Solve trigonometric equations in a given interval

－Know and use the function ax and its graph，where a is positive

－Know and use the function ex and its graph

ξ－Know that the gradient of ekx is equal to kekx and hence
understand why the exponential model is suitable in many applications
－Know and use the definition of $\llbracket \log \rrbracket _a x$ as the inverse of $a x$ ，where a is positive and $x \geq 0$ ．
－Know and use the function Inx and its graph
－Know and use Inx as the inverse function of ex
－Understand and use the laws of logarithms：
－Solve equations of the form $\mathrm{ax}=\mathrm{b}$
－Use logarithmic graphs to estimate parameters in relationships of the form $y=a x n$ and $y=k b x$ ，given data for x and y
－Understand and use exponential growth and decay；use in modelling and consider limitations and refinements of models

A Level Maths
A Level Maths

Year 13

－Calculate the magnitude and direction of a 3D vector and convert between component form and magnitude／direction form
－Add 3D vectors diagrammatically and perform the algebraic operations vector addition and multiplication by scalars and understand their geometrical interpretation

Year 12

Understand and use

－Understand and use the vector and Cartesian forms of the equation of a plane．
－Calculate the scalar product and use it to calculate the angle between two lines，
－Check whether vectors are perpendicular by using the scala product．
－Find the intersection of two lines．Find the intersection of a line and a plane．Calculate the perpendicular distance between two lines， from a point to a line and from a point to a plane．
－Locate roots of $f(x)=0$ by considering changes of sign of $f(x)$ in an interval of x －Understand the limitations of change of sign methods
－Solve equations approximately using simple iterative methods and
understand their limitations；be able to draw associated cobweb and staircase diagrams
－Solve equations using the Newton－Raphson method and understand its limitations
－Understand and use the trapezium rule to estimate the area under a curve －Use numerical methods to solve problems in context
－Understand and use radian measure，including use for arc length and area of a sector
Understand and use the standard small angle approximations －Solve simple trigonometric equations using radians
－Understand and use the definitions of the reciprocal trigonometric functions， including their graphs
－Understand and use the definitions of the inverse trigonometric functions， including their graphs
－Understand and use the identities $\llbracket \sec \rrbracket \wedge 2 \mathrm{x} \equiv 1+\llbracket \tan \rrbracket \wedge 2 \mathrm{x}$ and （cosec『＾2x＝1＋【cot】＾2 $\times 3$
－Understand and use the compound angle formulae and double angle
formulae，including their geometric proofs
－Understand and use expressions given in harmonic form
－Construct proofs involving trigonometric functions and identities
－Use trigonometric functions to solve problems in context

Calculate and the vector product．Understand and use the equation of a straight line in the form $(r-a)$ $\times b=0$ Use vector products to find the are of a triangle
－Mid－ordinate rule and Simpson＇s rule for integration．
－Euler＇s step by step method for solving first order differential equations
－Improved Euler method for solving first order differential equations．

		A Level Maths		A Level Further Maths	
		Year 12	Year 13	Year 12	Year 13
				- Understand and use polar coordinates and be able to convert between polar and Cartesian coordinates. - Sketch curves with r given as a function of θ, including use of trigonometric functions.	- - Find the area enclosed by a polar curve.
				- Understand the definitions of hyperbolic functions $\sinh x, \cosh x$ and tanh x, including their domains and ranges, and be able to sketch their graphs. - Differentiate and integrate hyperbolic functions - Understand and be able to use the definitions of the inverse hyperbolic functions and their domains and ranges. - Derive and use the logarithmic forms of the inverse hyperbolic functions. - Understand and use - $\tanh x=\sinh x / \cosh x$ - Derive and use $\llbracket \cosh x \rrbracket \wedge 2-\llbracket \cosh x \rrbracket \wedge 2=1$ - use identities to solve equations or derive other results	- Understand the definitions of hyperbolic functions sech x, cosech x and coth x, including their domains and ranges. - Integrate functions of the form ($x^{\wedge} 2+a^{\wedge} 2$ $)^{\wedge}(1 / 2),\left(x-a^{\wedge} 2\right)^{\wedge}(-1 / 2)$ and be able to choose substitutions to integrate associated functions. - Construct proofs involving hyperbolic functions and identities. - Construct proofs involving hyperbolic functions and identities.
$\frac{1}{2}$				- Solve any quadratic equation with real coefficients; solve cubic or quartic equations with real coefficients - Understand and use the complex conjugate; know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs. - Use and interpret Argand diagrams. - Convert between the Cartesian form and the modulus-argument form of a complex number - Multiply and divide complex numbers in modulus-argument form - - Construct and interpret simple loci in the Argand diagram	- Understand de Moivre's theorem and use it to find multiple angle formulae and sums of series. - Know and use the definition ei $\theta=\cos \theta+\mathrm{i} \sin \theta$ and the form $\mathrm{z}=$ rei θ - Find the n distinct nth roots of rei θ for $r \neq 0$ and know that they form the vertices of a regular n-gon in the Argand diagram. - Use complex roots of unity to solve geometric problems.
				- Add, subtract and multiply conformable matrices; multiply a matrix by a scalar. - Understand and use zero and identity matrices. - Use matrices to represent linear transformations in 2D; successive transformations; single transformations in 3D - Find invariant points and lines for a linear transformation. - Calculate determinants of 2×2 matrices and 3×3 matrices and interpret as scale factors, including the effect on orientation. - U Understand and use singular and non-singular matrices; properties of inverse matrices. Calculate and use the inverse of nonsingular 2×2 matrices and 3×3 matrices	- Solve three linear simultaneous equations in three variables by use of the inverse matrix. - Interpret geometrically the solution and failure of solution of three simultaneous linear equations - Factorisation of determinants using row and column operations - Find eigenvalues and eigenvectors of 2×2 and 3×3 matrices. Find and use the characteristic equation. Understand the geometrical significance of eigenvalues and eigenvectors - Diagonalisation of matrices

Prince William School

A Level Maths
A Level Further Maths

Year 12

- Understand and use fundamental quantities and units in the S.I. system and language of kinematics - Understand, use and interpret graphs in kinematics for motion in a straight line
- Understand, use and derive the formulae for constant acceleration for motion in a straight line - Use calculus in kinematics for motion in a straight line
Understand the concept of a force; understand and use Newton's first law
- Understand and use Newton's second law for motio in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors)
- Understand and use weight and motion in a straight line under gravity
- Understand and use Newton's third law, applying to problems involving smooth pulleys and connected particles

	articles	- Understand and use moments in simple static contexts

- Extend use of the formulae for const
motion in a straight line to 2D vectors
- Extend use calculus in kinematics for motion in a straigh
line to 2D vectors
- Model motion under gravity in a vertical plane using vectors
- Use and understand assumptions made when modelling projectiles
- Extend use of Newton's second law for motion in a
straight line to situations where forces need to be resolved
(2D only)
- Extend use of Newton's third law to situations where
forces need to be resolved (2D only) and equilibrium of a
particle under coplanar forces
- Understand and use addition of forces and resultant forces
- Understand and use the model for friction
-
- Understand and use moments in simple static contexts

Centre of mass for a system of particles.

- Centre of mass for a composite body
- Centre of mass of a lamina by integration
- Centres of mass of bodies formed by rotating a region about the x-axis
- Conditions for sliding and toppling. Problems including suspension and on an inclined plane
- Determine the forces acting on a rigid body in equilibrium. Use of moments and couples.
Finding dimensions of quantities; checking for dimensional consistency
- Conservation of momentum for linear motion and cases where velocities
are given as one or two dimensional vectors
Coefficient of Restitution and Newton's Experimental Law. Use in direct collisions and impacts with a fixed smooth surface
- Impulse and its relation to momentum (in one or two dimensions)
- Impulse for variable forces. One dimension only. Use of I = \int F dt
- Work done by a force acting in the direction of motion or directly
opposing the motion. Use of WD $=$ Fdcos θ
- Gravitational potential energy. Use in conservation of energy problems.
- Kinetic energy. Use in conservation of energy problems.
- Hooke's Law including using modulus of elasticity.
- Work done by a variable force. Use of WD $=\int \mathrm{Fdx}$
- Use in conservation of energy problems.
- Elastic Potential Energy using modulus of elasticity
- Motion of a particle moving in a circle with constant speed
- Understand the definition of angular speed
- Relationships between speed, angular speed, radius and acceleration.

- resolving forces in contexts such as cars moving on banked

 tracks, particles moving on the inside of an upturned cone or hemisphere.- Use position, velocity and acceleration as vectors in th context of circular motion
- Circular motion in a vertical plane. Includes conditions to complete vertical circles. Use of conservation of energy in this context

Prince William School

Maths Curriculum Map - Substantive Progression KS5 (A Level) - Statistics

		A Level Maths		A Level Further Maths	
		Year 12	Year 13	Year 12	Year 13
$\begin{aligned} & \frac{0}{\#} \\ & \frac{N}{\#} \\ & \stackrel{\pi}{n} \end{aligned}$		- Understand and use the terms 'population' and 'sample' - Understand, use and critique sampling techniques, including simple random sampling and opportunity sampling			
		- DATA PRESENTATION \& INTERPRETATION - Interpret diagrams for single-variable data - Interpret diagrams for bivariate data - Understand informal interpretation of correlation and that correlation does not imply causation - Interpret measures of central tendency and variation - Be able to calculate standard deviation			
		- Understand and use mutually exclusive and independent events when calculating probabilities	- Understand and use conditional probability, including the use of tree diagrams, Venn diagrams, two-way tables and the conditional probability formula - Modelling with probability, including critiquing assumptions - Find probabilities using the Normal distribution - Select an appropriate probability distribution for a context		
		- Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial distribution			
		- SSTATISTICAL HYPOTHESIS TTESTING - Understand and apply the language of statistical hypothesis testing, developed through a binomial model - Conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context	- Extend the language of statistical hypothesis testing to correlation coefficients as measures of how close data points lie to a straight line and be able to interpret a given correlation coefficient using a given p-value or critical value - Conduct a statistical hypothesis test for the mean of a Normal distribution with known, given or assumed variance and interpret the results in context		

Prince William School

Maths Curriculum Map - Substantive Progression KS5 (A Level) - Discrete

A Level Maths
Year 12
Year 13

Year 12

A Level Further Maths

		A Level Maths		A Level Further Maths	
		Year 12	Year 13	Year 12	Year 13
	$\begin{aligned} & \frac{n}{\circ} \\ & \frac{0}{0} \end{aligned}$			- Understand and use the language of graphs, including vertex, edge, trail, cycle, connected, degree, subgraph, subdivision, multiple edge and loop. - Identify or prove properties of a graph including that a graph is Eulerian, semi-Eulerian or Hamiltonian. - Understand and use Euler's formula for connected planar graphs. - Understand and use complete graphs and bipartite graphs, including adjacency matrices and the complement of a graph - Understand and use simple graphs, simple-connected graphs and trees	- Use Kuratowski's Theorem to determine the planarity of graphs - Recognise and find - isomorphism between graphs
	$\begin{aligned} & \frac{y}{0} \\ & \sum_{0}^{3} \\ & \frac{0}{2} \end{aligned}$			- Understand and use the language of networks including: node, arc and weight - Solve network optimisation problems using spanning trees - Solve route inspection problems - Find and interpret upper bounds and lower bounds for the Travelling Salesperson problem - Evaluate, modify and refine models that use networks.	
				- Interpret flow problems represented by a network of directed arcs - Find the value of a cut and understand its meaning - Use and interpret the maximum flow-minimum cut theorem	Augment flows and determine the maximum flow in a network - Solve problems including arcs with upper and lower capacities - Refine network flow problems including using nodes of restricted capacity
				- Formulate and solve constrained optimisation problems	- Use the Simplex algorithm for optimising (maximising and minimising) an objective function including the use of slack variables. - Interpret a Simplex tableau
				- Construct, represent and interpret a precedence (activity) network using activity-onnode. - Determine earliest and latest start and finish times for an activity network - Identify critical activities, critical paths and the float of non-critical activities. - Refine models and understand the implications of possible changes in the context of critical path analysis	- Construct and interpret Gantt (cascade) charts and resource histograms - Carry out resource levelling (using heuristic procedures) and evaluate problems where resources are restricted
				- Understand, interpret and construct pay-off matrices - Find play-safe strategies and the value of the game - Prove the existence or non-existence of a stable solution - Identify and make use of dominated strategies - Find optimal mixed strategies for a game including use of graphical methods	- Convert higher order games to linear programming problems and solve using the Simplex algorithm
				- Understand and use binary operations including use of modular arithmetic and matrix multiplication. - Understand, use and prove the commutativity of a binary operation - Understand, use and prove the associativity of a binary operation - Understand and prove the existence of an identity element for a given set under a given binary operation. - Find the inverse of an element belonging to a given set under a given binary operation	

Prince William School
Maths Curriculum Map - Disciplinary Progression

	KS3	KS4	KS5
Build mathematical fluency	Develop fluency in use of mathematical language. Develop use of mathematical tools ie protractor, compass and calculator.	Revisit core disciplinary and procedural knowledge	Understand mathematical processes in a way that promotes confidence, promotes enjoyment and provides a strong foundation for further study
Reason mathematically	Think mathematically and apply procedural and disciplinary knowledge to problem-solving, reasoning and communication	Make deductions and inferences using mathematical reasoning	
Problem solve in a variety of contexts	Develop problem solving processes		Explore concepts and how they make connections both within and across topics
Making connections		Use mathematical skills and techniques to make logical and reasoned decisions in solving problems in a variety of contexts	

Prince William School

Maths Curriculum Map - Year 7 Vocabulary

	Autumn			Spring			Summer		
	INVESTIGATING NUMBER SYSTEMS ascending; descending billion decimal decimal place(s) decimal point integer less than, < million nearest integer negative order partition place value positive significant figure(s) PATTERN SNIFFING arithmetic progression common factor common multiple cube (number) factor first term highest common factor integer linear lowest common multiple multiple prime root sequence square (number) term term to term rule triangular (number)	EXPLORING CALCULATIO < less than = equal to \neq not equal to $>$ greater than add, plus, sum, total approximate brackets calculate decimal divide, quotient estimate Evaluate expression formula integer multiply, product negative operation order of operations positive square root, cube root, root square, cube, power subject (of a formula) substitute subtract, take away, difference term Evaluate GENERALISING ARITHMETIC addition collect like terms distributive law division equation expand expression formula identity inverse (operation) multiplication operation raising to a power simplify subtraction term	EXPLORING SHAPE (acute-angled) (obtuse-angled) 2 dimensional 3 dimensional angle angles around a point angles on a straight line cone convention cross-section cube cuboid cylinder edge equilateral face isosceles isosceles kite label line mark notation: $A B$ notation: $A B C D$ notation: BAC parallel parallelogram perpendicular plane point polygon polygon prism property pyramid quadrilateral rectangle regular polygon rhombus rhombus right angles right-angled scalene shape sphere square surface tetrahedron trapezium triangle triangle vertex/vertices vertically opposite ertically opposite	EXPLORING SHAPE diagonal irregular mirur line regular rotational symmetry symmetry REASONING WITH MEASURES composite cuboid/cube derive dimension dissect distance formula km, m, cm, km2, m2, cm2, mm2 length mm parallelogram perimeter perpendicular height rectangle shape surface total trapezium triangle volume width	DISCOVERING EQUIVALENCE compare convert equivalent multiplier operator quantity percentage increase percentage decrease fraction greater than, less than integer numerator denominator decimal order out of part(s) per per cent percentage whole REASONING WITH FRACTIONS experiment (of an) amount certain chance denominator difference equivalent even event expected experiment fraction fraction fraction frequency frequency tree impossible improper likely mixed number numerator outcome part probability probability product proper fraction quotient random repeated scale simplest form simplify sum theoretical unit fraction unlikely whole	SOLVING PROBLEMS WITH NUMBER bor model equals = equation equivalent function machine greater than > greater than or equal \geq inverse (operation) less than < less than or equal \leq letter (variable) operation solution solve term test unknown	INVESTIGATING STATISTICS average: mean, median, mode bar chart categorical data categories chart classes/class intervals Compare continuous data set discrete frequency pictogram pie chart spread: range table vertical line VISUALISING SHAPE (arc) (sector) (segment) accurate acute angle measurer centre chord circle circumference construct degrees diagram diameter draw equilateral isosceles line measure nearest angle obtuse parallel line perpendicular line polygon protractor radius reflex regular right angle triangle scalene sketch symmetry	EXPLORING CHANGE coordinate (x, y) x coordinate y coordinate quadrant negative axis x -axis y-axis origin horizonta vertical plot first quadrant 2nd quadrant 3rd quadrant 4th quadrant construct coordinate grid vertices line midpoint equation PROPORTIONAL REASONING simplify cancel common factors compare fraction fraction (of amount) lowest terms multiplier part part per whole proportion proportion ratio scaling up (or down) share unit whole	DESCRIBING POSITION angle of rotation centre column vector combination congruent describe direction of rotation equation of line horizontal image line midpoint object quadrant reflection rotation segment transformation translation vertex vertical MEASURING AND ESTIMATING convert equivalence estimate prefixes: milli, centi, kilo scaling standard units together with metres, grams, litres inches, feet, pounds ounces, stone, miles, pint units

Prince William School

Maths Curriculum Map - Year 8 Vocabulary

	Autumn			Spring			Summer		
	INVESTIGATING NUMBER SYSTEMS round decimal place significant figure appropriate degree of accuracy PATTERN SNIFFING term to term rule position to term rule nth term prime(number) highest common factor lowest common multiple prime factor (decomposition) factorisation unique factorisation theorem index notation EXPLORING CALCULATION calculate integer positive negative decimal add, plus, sum, total multiply, product divide, quotient, dividend, divisor square, cube, power operation order of operations brackets formula subject (of a formula) equation identity term expression substitute evaluate	GENERALISING ARITHMETIC product quotient co-efficient power index(indices) law simplify bracket distributive law expand factor factorise common factor notation inequality equation Formula EXPLORING SHAPE parallel lines transversal line alternate angles corresponding angles co-interior angles equal prove polygon regular/irregular sum interior angle exterior angle angle sum vertices	REASONING WITH MEASURES perimeter rectangle parallelogram trapezium triangle composite shape compound shape dissect circumference circle radius/radii diameter circumference arc area annulus constituent cuboid prism cylinder cross-section surface area net curved surface Volume	DISCOVERING EqUIVALENCE fraction numerator denominator simplify in its simplest form decimal terminating recurring tenths, hundredths, thousandths... equivalent division percentage \% multiplier mentally with a calculator single calculation increase decrease original amount inverse percentage change interest simple interest per annum invest(ment)	REASONING WITH FRACTIONS fraction numerator denominator part whole equivalent fraction unit fraction proper fraction mixed number improper fraction simplest form simplify sum difference product quotient (of an) amount probability chance impossible even certain likely unlikely experiment probability scale outcome event exhaustive independent exclusive mutually exclusive frequency frequency tree expected theoretical experimental random repeated experiment	SOLVING PROBLEMS WITH NUMBER solve variable side solution linear equal flow both sides same as equation unknown inverse symbol not equal INVESTIGATING STATISTICS scatter graph connection correlation positive correlation negative correlation no correlation frequency diagram frequency polygon mode, modal class grouped data frequency table estimate mean, median, range spread average central tendency variation sample Population	VISUALISING SHAPE scale scale drawing accurate ratio proportion similar bearing north (line) clockwise construct sketch bisect perpendicular locus/loci intersect equidistant plan elevation viewpoint Isometric EXPLORING CHANGE coordinate x coordinate; y coordinate (x, y) x-axis; y-axis origin graph table of values substitute linear straight line equation relationship horizontal vertical gradient slope steepness y-intercept intersection solve equation function quadratic	PROPORTIONAL REASONING ratio proportion fraction whole part quantity variable multiplier Per unit rate scale factor similar enlargement length, area and volume perimeter relative simplify in simplest terms/form DESCRIBING POSITION transformation similar congruent enlargement centre of enlargement ray scale factor integer ratio proportion describe object image	MEASURING AND ESTIMATING compound measures formula(e) unit rates of change per speed best value real life graph distance/displacement speed/velocity acceleration stationary

	Autumn			Spring			Summer		
$\underset{ }{\star}$	NUMBER-CALCULATION place value partition million billion positive negative integer decimal decimal point decimal place(s) round to the nearest ... greater than, > less than, < order ascending; descending appropriate degree of accuracy calculate add, plus, sum, total subtract, take away, difference multiply, product, divide, quotient, dividend, divisor operation order of operations brackets	GEOMETRY - SHAPE shape dimensional dimensional polyhedron cube cuboid prism cross-section pyramid tetrahedron cylinder cone sphere point line vertex/vertices edge plane face surface parallel perpendicular right angles polygon regular polygon label mark angle triangle equilateral isosceles scalene right-angled square rectangle parallelogram rhombus trapezium kite polygon regular irregular diagonal mirror line rotational symmetry angles around a point angles on a straight line vertically opposite equal sum	NUMBER - CALCULATION 2 cube square root cube root root power prime (number) highest common factor lowest common multiple prime factor (decomposition) product of primes unique factorisation theorem index notation ALGEBRA - SIMPLIFYING operation inverse (operation) addition subtraction multiplication division sum difference product quotient power index (indices) raising to a power term expression Simplify Collect Like Terms Bracket Co-efficient Expand Factor Factorise Factorise fully Common Factor Notation	RATIO \& PROPORTION FRACTIONS, DECIMALS, PERCENTAGES fraction numerator denominator part whole equivalent unit fraction proper fraction improper fraction simplest form simplify sum difference product quotient percentage per cent out of per compare greater than less than decimal convert terminating	NUMBER AND ALGEBRA SEQUENCES sequence term rm erm-to-term rule linear first term triangular (number) square (number) cube (number) arithmetic progression term-to-term rule position-to-term rule nth term pattern number ALGEBRA - SOLVING expression term equation unknown substitute solve solution side equal both sides inverse operation bracket check Construct	GEOMETRY - MEASURING perimeter distance length width dimension total $\mathrm{km}, \mathrm{m}, \mathrm{cm}, \mathrm{mm}$ composite shape compound shape dissect area squares formula derive rectangle parallelogram trapezium triangle perpendicular height $\mathrm{km} 2, \mathrm{~m} 2, \mathrm{~cm} 2, \mathrm{~mm} 2$ volume cuboid/cube prism surface area net	RATIO \& PROPORTION SCALING proportion fraction compare ratio part whole unit share simplify common factors cancel lowest terms part per whole multiplier scaling up (or down) proportion fraction (of amount) ALGEBRA - GRAPHING coordinate x coordinate; y coordinate (x, y) quadrant x-axis; y-axis origin horizontal vertical plot vertices midpoint intersection graph table of values substitute linear straight line graph equation relationship function	PROBABILITY Probability Chance Impossible Even Certain Likely Unlikely Outcome Event Experiment Probability Scale Frequency Frequency Tree Sample Space List of Outcomes Expected Theoretical Experimental Random Repeated	STATISTICS data data set discrete continuous grouped class class interva categories ungrouped frequency table chart bar chart pie chart pictogram categorical data vertical line chart frequency diagram frequency polygon stem-and-leaf diagram key average: mean, median, mode modal class

	Autumn			Spring			Summer		
	NUMBER-CALCULATION place value partition million billion positive negative integer decimal decimal point decimal place(s) round significant figure(s) greater than, > less than, < order ascending descending appropriate degree calculate add, plus, sum, total subtract, take away, difference multiply, product divide, quotient, dividend, divisor operation order of operations brackets square cube square root cube root root power index/indices simplify prime (number) highest common factor lowest common multiple prime factor decomposition product of primes unique factorisation theorem index notation	GEOMETRY - SHAPE 2 dimensional 3 dimensional cube cuboid prism pyramid tetrahedron cylinder cone sphere point line vertex/vertices edge plane face surface cross-section parallel perpendicular right angles polygon regular polygon label mark notation: $B A C$ notation: $A B$ notation: $A B C D$ convention angle rhombus triangle isosceles property triangle equilateral isosceles scalene right-angled (acute-angled) (obtuse-angled) quadrilateral square rectangle parallelogram rhombus trapezium kite polygon regular	irregular diagonal symmetry mirror line rotational symmetry angles around a point angles on a straight line vertically opposite parallel lines transversal (line) alternate angles corresponding angles co-interior angles equal prove polygon regular / irregular sum interior angle exterior angle angle sum vertices NUMBER - CALCULATION 2 operation inverse (operation) addition subtraction multiplication division sum difference product quotient power index (indices) law raising to a power ALGEBRA - SIMPLIFYING term expression simplify collect like terms bracket co-efficient distributive law expand factor factorise factorise fully common factor notation inequality number line equation identity	RATIO \& PROPORTION FRACTIONS, DECIMALS, PERCENTAGES fraction numerator denominator part whole equivalent unit fraction proper fraction mixed number improper fraction simplest form simplify sum difference product quotient (of an) amount percentage per cent out of per whole	NUMBER AND ALGEBRA SEQUENCES sequence term term-to-term rule linear first term triangular (number) square (number) cube (number) arithmetic progression term-to-term rule position-to-term rule nth term pattern number ALGEBRA - SOLVING formula subject (of a formula) equation identity term expression substitute evaluate variable solve variable side solution linear equal unknown inverse	GEOMETRY - MEASURING perimeter distance length width dimension total km, m, cm, mm composite shape compound shape dissect circle centre circumference radius/radii diameter pi, π sector area squares formula derive rectangle parallelogram trapezium triangle perpendicular height km2, m2, cm2, mm2 annulus volume cuboid/cube prism cross-section right prism triangular prism surface surface area net curved surface cylinder km3, m3, cm3, mm3	RATIO \& PROPORTION SCALING ratio proportion fraction whole part quantity variable multiplier per unit rate scale factor similar corresponding enlargement length, area and volume perimeter		GEOMETRY - VISULASING transformation rotation reflection translation describe vertex centre angle of rotation direction equation of line horizontal vertical column vector combination congruent object image similar enlargement centre of enlargement ray scale factor proportion describe vertical column vector combination congruent object image similar enlargement centre of enlargement ray scale factor proportion describe

Prince William School

Maths Curriculum Map - Year 9 Higher Vocabulary

	Autumn			Spring			Summer		
	NUMBER-CALCULATION measurement rounded truncated error inequality 'to the nearest' accuracy power square (root) cube (root) index, indices base exponent laws of indices simplify reciprocal evaluate standard form ordinary form in terms of calculate exactly formula substitute evaluate equation identity expression expand factorise simplify decimal terminating recurring) equivalent corresponding (rational) denominator numerator	GEOMETRY - SHAPE centre radius diameter circumference chord arc, segment sector tangent construct sketch bisect perpendicular locus/loci intersect equidistant plan elevation viewpoint isometric	ALGEBRA - SIMPLIFYING expression term expand bracket product simplify multiply over binomial distributive law quadratic coefficient factor factorise factorise fully common factor square difference of two squares equivalent identity equation prove/show argument formula substitute evaluate		NUMBER AND ALGEBRA SEQUENCES term first term linear sequence arithmetic progression quadratic sequence Fibonacci sequence Fibonacci-type recurrence relation notation position (n) nth term notation: $\mathrm{t}(\mathrm{n})$ first differences second differences delta1, delta 2 geometric progression ratio multiplier convergent divergent	ALGEBRA - SOLVING expression formula variable unknown subject rearrange inequality $\langle,>, \leq, \geq$ number line solution set integer set set notation x, y, z GEOMETRY - MEASURING Pythagoras' theorem right-angled triangle hypotenuse shorter side (leg) notation of right-angled notation of equal length sides prove square square root properties equal angles	RATIO \& PROPORTION SCALING congruent/congruence similar/similarity transformation reflection rotation translation enlargement scale factor ratio (of sides) corresponding preserve		STATISITCS - DATA boundary solution set set notation $2,3,6,7$

Prince William School
≥ 0000000
Maths Curriculum Map - Number Vocabulary KS3

Prince William School
Maths Curriculum Map - Geometry Vocabulary KS3

	Year 7			Year 8		Year 9 - SUPPORT		Year 9 - CORE			Year 9 - HIGHER
	EXPLORING SHAPE (acute-angled) (obtuse-angled) 2 dimensional 3 dimensional angle angles around a point angles on a straight line cone convention cross-section cube cuboid cylinder edge equilateral face isosceles kite label line mark notation: $A B$ notation: $A B C D$ notation: $B A C$ parallel parallelogram perpendicular plane polygon polygon prism property pyramid quadrilateral rectangle regular polygon rhombus right angles right-angled scalene shape sphere square surface $\begin{aligned} & \text { tetrahedron }\end{aligned}$ trapezium triangle triangle vertex/vertices vertically opposite	EXPLORING SHAPE diagonal irregular mirror line regular rotational symmetry symmetry VISUALISING SHAPE (arc) (sector) (segment) accurate acute angle measurer centre chord circle circumference construct degrees diagram diameter draw equilateral isosceles line measure nearest angle obtuse parallel line perpendicular line polygon protractor radius reflex regular right angle triangle scalene sketch symmetry	DESCRIBING POSITION angle of rotation centre column vector combination congruent describe direction of rotation equation of line horizontal image line midpoint object quadrant reflection rotation segment transformation translation vertex vertical	EXPLORING SHAPE parallel lines transversal line alternate angles corresponding angles co-interior angles equal prove polygon regular/irregular sum interior angle exterior angle angle sum vertices VISUALISING SHAPE scale scale drawing accurate ratio proportion similar bearing north (line) clockwise sketch bisect perpendicular locus/loci intersect equidistant plan elevation viewpoint Isometric		GEOMETRY \& SHAPE shape dimensional dimensional polyhedron cube cuboid cross-section pyramid tetrahedron cylinder cone sphere point vertex/vertices edge plane face surface parallel perpendicular right angles polygon regular polygon label mark angle triangle equilateral isosceles scalene right-angled quadrilateral square rectangle parallelogram rhombus kite polygon regular irregular symmetry mirror line rotational symmetry angles around a point angles on a straight line vertically opposite equal sum	GEOMETRY - MEASURING perimeter distance length width dimension total km, m, cm, mm composite shape compound shape dissect area squares formula derive rectangle parallelogram triangle perpendicular height $\mathrm{km} 2, \mathrm{~m} 2, \mathrm{~cm} 2, \mathrm{~mm} 2$ volume cuboid/cube prism surface area net DESCRIBING POSITION ransformation similar congruent enlargement centre of enlargement ray scale factor integer ratio proportion describe object image	GEOMETRY - SHAPE 2 dimensional 3 dimensional cube cuboid prism tetrahedron cylinder cone sphere point line vertex/vertices edge plane face cross-section parallel perpendicular right angles polygon regular polygon label mark notation: $B A C$ notation: $A B$ notation: $A B$ convention angle rhombus triangle isosceles property triangle equilateral isosceles scalene right-angled (acute-angled) quadrilateral square rectangle parallelogram rhombus trapezium kite regular irregular diagonal symmetry rotational symmetry angles around a point angles on a straight line	vertically opposite parallel lines transversal (line) alternate angles corresponding angles co-interior angles equal prove polygon regular / irregular sum interior angle exterior angle angle sum vertices GEOMETRY - MEASURING perimeter distance length width dimension total $\mathrm{km}, \mathrm{m}, \mathrm{cm}, \mathrm{mm}$ composite shape compound shape dissect circle centre circumference radius/radii diameter pi, π sector area squares formula derive rectangle parallelogram trapezium triangle perpendicular height km2, m2, cm2, mm2 annulus volume cuboid/cube prism ross-section right prism triangular prism surface surface area net curved surface cylinde km3, m3, cm3, mm3	GEOMETRY - VISULASING transformation rotation reflection describe vertex centre angle of rotation direction equation of line horizontal vertical column vector combination congruent object image similar enlargement centre of enlargement ray scale factor proportion describe vertical column vector combination congruent object image similar centre of enlargement ray scale factor proportion describe	GEOMETRY - SHAPE centre radius diameter circumference chord arc, segment sector tangent construct sketch bisect perpendicular locus/loci intersect equidistant plan elevation viewpoint isometric GEOMETRY - MEASURING Pythagoras' theorem right-angled triangle hypotenuse shorter side (leg) notation of right-angled notation of equal length sides prove square square root properties equal angles

	Year 7	Year 8	Year 9 - SUPPORT			Year 9 - CORE			Year 9 - HIGHER		
	GENERALISING ARITHMETIC addition collect like terms distributive law division equation expand expression formula identity inverse (operation) multiplication operation raising to a power simplify subtraction term	GENERALISING ARITHMETIC product quotient co-efficient power index(indices) law simplify bracket distributive law expand factor factorise common factor notation inequality equation Formula	ALGEBRA - SIMPLIFYING operation inverse (operation) addition subtraction multiplication division sum difference product quotient power index (indices) raising to a power term expression Simplify Collect Like Terms Bracket Co-efficient Expand Factor Factorise Factorise fully Common Factor Notation	NUMBER AND ALGEBRA - SEQUENCES sequence term term-to-term rule linear first term triangular (number) square (number) cube (number) arithmetic progression term-to-term rule position-to-term rule nth term pattern number ALGEBRA - SOLVING formula subject (of a formula) equation identity term expression substitute evaluate variable solve variable side solution linear equal unknown inverse	ALGEBRA - GRAPHING coordinate x coordinate; y coordinate (x, y) quadrant x-axis; y-axis origin horizontal vertical plot vertices midpoint intersection graph table of values substitute linear straight line graph equation relationship function	ALGEBRA SIMPLIFYING term expression simplify collect like terms bracket co-efficient distributive law expand factor factorise factorise fully common factor notation inequality number line equation identity	NUMBER AND ALGEBRA - SEQUENCES sequence term term-to-term rule linear first term triangular (number) square (number) cube (number) arithmetic progression term-to-term rule position-to-term rule nth term pattern number ALGEBRA - SOLVING formula subject (of a formula) equation identity term expression substitute evaluate variable solve variable side solution linear equal unknown inverse	ALGEBRA - GRAPHING relative coordinate x coordinate; y coordinate (x, y) quadrant x-axis; y-axis origin horizontal vertical plot vertices midpoint intersection graph table of values substitute linear straight line equation relationship horizontal vertical gradient/slope/steepness y-intercept intersection solve equation function	ALGEBRA - SIMPLIFYING expression term expand bracket product simplify multiply over binomial distributive law quadratic coefficient factor factorise factorise fully common factor square difference of two squares equivalent identity equation prove/show argument formula substitute evaluate NUMBER AND ALGEBRA - SEQUENCES term first term linear sequence arithmetic progression quadratic sequence Fibonacci sequence Fibonacci-type recurrence relation notation position (n) nth term notation: $\mathrm{t}(\mathrm{n})$ first differences second differences delta1, delta 2 geometric progression ratio multiplier convergent divergent	 PROPORTION - FRACTIONS, DECIMALS, PERCENTAGES percentage \% multiplier mentally with a calculator single calculation increase decrease original amount inverse percentage change interest simple interest per annum invest(ment) proportion direct proportion inverse proportion multiplier scale factor linear function graph product fixed product congruent/congruence similar/similarity transformation reflection, rotation, translation, enlargement scale factor ratio (of sides) corresponding preserve unit standard unit compound unit per density mass pressure speed acceleration	ALGEBRA - GRAPHING straight line equation function $\mathrm{f}(\mathrm{x})$ $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ gradient y-intercept intersection parallel coefficient constant root solution intercept turning point vertex quadratic quadratic function graphically algebraically factorise cubic function inverse function reciprocal sketch plot graph plot linear equation solve solution intersect/intersection simultaneous equations variables elimination substitution set of points satisfied by solve graphically inequality system region region satisfied by intersection

	Year 7	Year 8	Year 9 - SUPPORT	Year 9 - CORE	Year 9 - HIGHER
	INVESTIGATING STATISTIC average: mean, median, mode bar chart categorical data categories chart classes/class intervals Compare continuous data set discrete frequency pictogram spread: range table vertical line	INVESTIGATING STATISTICS scatter graph connection correlation positive correlation negative correlation no correlation frequency diagram frequency polygon mode, modal class grouped data frequency table estimate mean, median, range spread average central tendency variation sample Population	PROBABILITY Probability Chance Impossible Even Certain Likely Unlikely Outcome Event Experiment Probability Scale Frequency Frequency Tree Sample Space List of Outcomes Expected Theoretical Experimental Random Repeated STATISTICS data data set discrete continuous grouped class class interva categories ungrouped tally chart frequency table chart bar chart pie chart pictogram categorical data vertical line chart frequency diagram frequency polygon stem-and-leaf diagram key average: mean, median, mode modal class		

Prince William School Maths Curriculum Map - Probability Vocabulary KS3				
	Year 7	Year 8	Year 9 - CORE	Year 9 - HIGHER
	REASOONING WITH FRACTIONS probability probabily producty proper fraction quotient random repeated scaled simplest form simplify sum theoretical unit fraction unlikely whole	REASONING WITH FRACTION probability chance impossible certain likely unlikely experiment probability scale outcome exhaustive independent exclusive mutually exclusive frequency frequency tree expected theoretical experimental random repeated experiment		

	Autumn						Summer	
	CALCULATION calculate add, plus, sum, total subtract, take away, difference multiply, product divide, quotient, dividend, divisor operation order of operations brackets square cube square root cube root power index/indices simplify prime (number) highest common factor; lowest common multiple prime factor (decomposition) product of primes/prime factorisation unique factorisation theorem GEOMETRY Shape 2 dimensional 3 dimensional Cube Cuboid Prism Pyramid Tetrahedron Cylinder Cone Sphere Point Line Vertex/Vertices Edge Plane Face Surface Cross-section Parallel Perpendicular Right angles Polygon Regular polygon Label Mark Angle Triangle Equilateral। isosceles Scalene Right-angled (Acute-angled) (Obtuse-angled) Quadrilateral Square	GEOMETRY (Continued) Rectangle Parallelogram Rhombus Trapezium Kite Regular Irregular Diagonal Symmetry Mirror Line Rotational Symmetry Angles around a point Angles on a straight line Vertically opposite parallel lines transversal (line) alternate angles corresponding angles co-interior angles equal prove polygon regular / irregular sum interior angle exterior angle angle sum Vertices distance length width dimension total km, m, cm, mm composite shape compound shape dissect circle centre circumference radius/radii diameter pi, π sector	ALGEBRA Operation nverse (operation) Addition, Subtraction, Multiplication, Division Sum Difference Product Quotient Power Index (Indices) Law Raising to a power Term Expression Simplify Collect Like Terms Bracket Co-efficient Distributive Law Expand Factor Factorise Factorise fully Common Factor Notation Inequality Number Line Equation (Identity) RATIO AND PROPORTION fraction numerator denominator part whole equivalent unit fraction proper fraction mixed number simplest form simplify sum difference product quotient (of an) amount percentage per cent out of per whole part(s) formula subject (of a formula) term expression	RATIO AND PROPORTION (Continued) substitute variable solve variable side solution linear equal both sides unknown inverse inequality $<,>, \leq, \geq$ number line integer ratio proportion fraction whole quantity variable multiplier per unit scale factor similar corresponding enlargement length, area and volume perimeter relative simplify in simplest terms/form lowest terms part per whole scaling up (or down) standard units convert equivalent notation of right-angled notation of equal length sides square(d) square root				

Maths Curriculum Map - Year 10 Higher Vocabulary KS4

Autumn
Spring
Summer

	Support			Core			Higher		
	DATA: STATISTICS data data set discrete continuous grouped class class interval categories ungrouped tally chart frequency table chart bar chart pie chart pictogram categorical data vertical line chart frequency diagram frequency polygon key central tendency average mean median mode modal class estimated mean variation spread range compare sample population scatter graph connection correlation positive correlation negative correlation no correlation causation line of best fit predict estimate trend interpolate Extrapolate	PROBABILITY Probability Chance Impossible Even Certain Likely Unlikely Experiment Sample size Tendency Probability Scale Outcome Event Exhaustive Independent Dependent Exclusive Mutually Exclusive List Systematically Frequency Frequency Tree Tree Diagram Branch Expected Theoretical Experimental Random Repeated Experiment Biased Unbiased And Or Both Neither	NUMBER CALCULATIONS measurement rounded truncated error inequality 'to the nearest' accuracy standard form ordinary form power Index Base pi π in terms of calculate exactly formula Substitute evaluate equation identity expression expand factorise Simplify GEOMETRY: SHAPE Pythagoras' Theorem right-angled triangle hypotenuse shorter side notation of right-angled notation of equal length sides prove square(d) square root	DATA: STATISTICS box plot box and whisker diagram median maximum minimum range upper quartile lower quartile interquartile range outlier central tendency spread dispersion consistency compare infer variation skew positive/negative skew cumulative frequency curve grouped data continuous data estimate limitation histogram frequency class interval equal and unequal distortion construct frequency density ratio (of frequency to class width) area of bar sample representative bias population random stratified double sampling	PROBABILITY Probability Chance Impossible Even Certain Likely Unlikely Experiment Sample size Tendency Probability Scale Outcome Event Exhaustive Independent Dependent Exclusive Mutually Exclusive List Systematically Frequency Frequency Tree Tree Diagram Branch Expected Theoretical Experimental Random Repeated Experiment Biased Unbiased And Or Both Neither	GEOMETRY: SHAPE triangle trigon Pythagoras' Theorem right-angled triangle hypotenuse root surd Pythagorean triple trigonometry opposite adjacent sine cosine tangent ratio similar (triangles) exact value denominator Numerator \arcsin or $\sin ^{\wedge}-1$ \arccos or $\cos ^{\wedge}-1$ \arctan or $\tan ^{\wedge}-1$	DATA: STATISTICS box plot box and whisker diagram median maximum minimum range upper quartile lower quartile interquartile range outlier central tendency spread dispersion consistency compare infer variation skew positive/negative skew cumulative frequency curve grouped data continuous data estimate limitation histogram frequency class interval equal and unequal distortion construct frequency density ratio (of frequency to class width) area of bar sample representative bias population random stratified double sampling	PROBABILITY Probability Outcome Event Exhaustive Independent Dependent Exclusive Mutually Exclusive Conditional Two-way table Venn Diagram Intersection \cap Union U Not e.g. A' List Systematically Frequency Frequency Tree Tree Diagram Expected Theoretical Experimental Random Repeated Experiment Biased Unbiased	ALGEBRA: SOLVING quadratic equation completed square form coefficient general quadratic vertex turning point quadratic formula root discriminant rearranging setting equal to 0 numerical method approximate Iteration $x_{0}, x_{1}, x_{2} \ldots$ $x_{n}, x_{n+1} \ldots$ iterative formula diverge change of sign interval interval bisection (a, b) for an open interval [a, b] for a closed interval GEOMETRY: SHAPE trigonometry Pythagoras' Theorem sine cosine tangent ratio arcsin arcos arctan angle of elevation sine rule cosine rule subject (of formula) non-right-angled proof derive perpendicular area

[^0]: Learning for Life and Careers
 Employability skills
 Resilience, inquisitiveness, problem solving, making connections and identify pattens, explain, justify, reason logically numeracy skills, communicate confidently.

 ## Linking the curriculum to careers

 Year group specific careers lessons delivered throughout the year

 ## Encounters with employers

 Opportunity to speak to employers at careers fairs and work experience in Y 10 and Y 12 .

 ## Examples of qualification pathway

 Students studying Maths at a higher level have access to some of the highest paid careers; if studying an A-Level in Maths, (the most popular A-Level in England), students can earn on average 11\% more.

 A-Level Maths is one of the most widely accepted and respected subject choice by universities and will keep your options open. Maths and Further Mathematics are 'facilitating subjects' which means they are amongst the most asked for by universities.
 Degree choices where A-level Mathematics is an essential requirement of nearly all universities: Actuarial Science, Aeronautical Engineering, Chemical Engineering, Civil Engineering, Economics, Electrical/Electronic Engineering, Engineering (General), Mathematics, Mechanical Engineering, Physics, Statistics,

 Degree choices where A-level Mathematics is listed as useful by most universities: Accountancy, Architecture, Biochemistry, Biology, Biomedical Sciences (including Medical Science), Business Studies, Chemistry, Computer Science, Dentistry, Dietetics, Geography - Some Geography BSc (science) degrees prefer one from Biology, Chemistry, Mathematics or Physics, Law - facilitating subjects at A-level are useful when applying for Law, Management Studies, Nursing and Midwifery,

